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Abstract. Three commonly used measures of diversity, Simpson's index, Shannon's entropy, 
and the total number of species, are related to Renyi's definition of a generalized entropy. A 
unified concept of diversity is presented, according to which there is a continuum of possible 
diversity measures. In a sense which becomes apparent, these measures provide estimates of 
the effective number of species present, and differ only in their tendency to include or to ignore 
the relatively rarer species. The notion of the diversity of a community as opposed to that of 
a sample is examined, and is related to the asymptotic form of the species-abundance curve. 
A new and plausible definition of evenness is derived. 

When ~e say that the humid tropics are more di­
verse than the tundra, we mean that there are more 
species there. More precisely, we mean that the spe­
cies in the humid tropics have on average lower pro­
portional abundances than those in the tundra-a 
fact which is amply visible to the naked eye and 
which can be demonstrated by the use of any mea­
sure of diversity we care to devise. But there is little 
point in merely confirming the obvious; the purpose 
of determining diversity by a numerical index is 
rather to provide a means of comparison between Jess 
clear-cut cases. Unfortunately, when we look for a 
suitable numerical definition, we find that no par­
ticular formula has a pre-eminent advantage, and 
that different authors have plausibly proposed dif­
ferent indices. In the ensuing confusion, Hurlbert 
(1971) has despaired, declaring diversity to be a non­
concept. Fortunately his despair is premature, and 
when carefuiJy defined according to an appropriate 
notation, diversity can be as unequivocal as any other 
ecological parameter. 

Many of the indices which have been proposed 
apply only to counts of individuals and not to contin­
uous measures of quantity. There is no obvious intu­
itive reason why this should be so, and Goodall 
(1970) observes that in plant communities counts of 
individuals are often impossible. Ideally, indeed, we 
should like to compute the diversity of a sample of 
dry weights or of productivities, as well as that of a 
sample of counts of individuals. Another point, often 
noticed and repeatedly ignored, is that whereas it is 
easy enough to define measures of diversity which 
apply to a particular sample, very often they will 
have no meaning when applied to the whole com­
munity. Consider, for example, the diversity as mea­
sured by the number of species in a sample. As the 
size of the sample is increased, so also will the "di-
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versity," almost without limit. On this basis Mac­
Arthur and Wilson ( 1967) propose a law of species­
area relations: that the number of species encoun­
tered is proportional to a power of the area sampled. 
In symbols, 

S a: A•, 

where S is the number of species encountered, A is 
the area sampled, and z is an empirical constant 
which usually lies between 0.1 and 0.4. So if we wish 
to use indices of diversity to characterize some fea­
ture of a hypothetically infinite community rather 
than of a particular sample, then we must allow for 
an arbitrarily large number of species. 

Different indices measure different aspects of the 
partition of abundance between species. Simpson's 
index, for example, is sensitive to the abundance only 
of the more plentiful species in a sample, and can 
therefore be regarded as a measure of "dominance 
concentration" (Whittaker 1965). Other statistics, 
such as the total number of species, are strongly 
affected by the presence of rarities. Whittaker con­
siders that the partition of abundance cannot be ad­
equately summarized by one statistic, but should be 
characterized both by the "dominance concentration" 
and by the total number of species. Other authors 
(e.g., Lloyd and Ghelardi 1964) have gone further, 
and have defined a notion of "evenness," which is 
in effect a comparison between the diversity as mea­
sured by the total number of species, and the diver­
sity as measured by some other statistic. 

Having developed an appropriate notation, we shall 
see that the statistics advocated by Whittaker are 
closely related to Shannon's entropy, and that all 
three measures are in a sense evaluations of the num­
ber of species present in the sample. They differ in 
their propensity ,to include or to exclude the relatively 
rarer species. Evenness is then redefined as the ratio 
of any two such evaluations, a definition which is 
shown to satisfy an important intuitive criterion. 
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NOTATION 

Let 

denote the proportional abundances of the n species 
in a sample. If we are dealing with dry weights, then 
Pi is the ratio of the mass of the i 111 species to the 
total mass of the sample. If we are dealing with 
counts of individuals, then p.i is the ratio of the count 
of the iti• species to the total number of individuals 
in the sample. And so on. 

Clearly, 
P1 + P2 + · · · + Pn = 1 . 

Ignoring finite sample considerations, Simpson's in­
dex is 

The formula can be rewritten 

where 

q= 
(P1P1 + P2P2 + · · · + PnPn) 

(p1 + P2 + · · · + p,.) 

W;=P; (i = 1, ... , n) . 

It follows that q is a weighted mean of the propor­
tional abundances. Now when only one species has 
any appreciable abundance 

q = 1' 

and when all n species are equally abundant 

q =lin. 

Other cases are intermediate. It follows that the quan­
tity 

N2(P1•P2• · ·., p,) = 11q 

is a measure of the degree of polydominance. (This 
is a loose description of what is measured by N 2 , but 
it does convey an intuitive impression.) 

More generally, we can define 

Na= 

[ (w1p 1a-1 + w2p 2a-1 + ... + w,p,a-1 )] 1111-a) 

(w1 +w2 + ... + w,.) 
which is the reciprocal of the (a - 1) th root of 
a weighted mean of the (a -1) th powers of the 
proportional abundances of the n species. For reasons 
similar to those given for the special case a = 2, N a 

can be regarded as an estimate of the effective num­
ber of species present in the sample. We shall call 
it the diversity number of order a. Remembering that 
the weights wi are equal to the proportional abun­
dances P;, we can rewrite our definition as 

Na = (p1a + P2a + • •. + p,a)1!(l-a) • 

N 0 can easily be seen by substitution to be n, the 
total number of species in the sample. N 1 is as yet 

undefined. However, N a is continuous with derivatives 
of all orders at a= 1. (For a proof, see Appendix.) 
Defining 

N 1 =lim (Na) , 
a->! 

we find that 
N 1 = exp( -~Pi ln(p;)) = exp(H) , 

where H is Shannon's entropy, 

-~Pi ln(p;) . 

Our notation therefore covers the three most im­
portant measures of diversity, Simpson's index 
(= 11 N 2 ), the total number of species (= N 0 ), and 
Shannon's entropy ( = ln(Ni)). It derives from 
Renyi ( 1961), who defined 

Ha = ln(Na) 

to be the generalized entropy of order a, and proved 
that the quantities H a satisfy certain axioms which 
entitled them to be regarded as measures of "infor­
mation." The information-theoretic analogy is not 
illuminating in the present context; diversities are 
better characterized as reciprocals of mean propor­
tional abundances. In particular, I I N 2 is an arith­
metic mean of the proportional abundances, I IN 1 

is a geometric mean of the proportional abundances, 
and I IN 0 is a harmonic mean of the proportional 

a 
FIG. 1. The relation between the diversity number N a 

and its order a for a particular 30 em X 30 em dry­
weight sample in a pasture. 
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abundances. (The means in question are, as we have 
seen, weighted by the proportional abundances them­
selves.) It is well known that the geometric mean 
always assumes a value intermediate between the 
arithmetic mean and the harmonic mean, so that 
N 1 (= exp(H)) is always sandwiched between N0 

the total number of species and N 2 the reciprocal of 
Simpson's index. Whittaker's ( 1965) assertion, there­
fore, that Simpson's index and the total number of 
species are between them suitable for characterizing 
the partition of abundance in a sample, is well borne 
out. Shannon's entropy, being essentially interme­
diate, conveys little extra information. 

A graph of N a versus a for a particular case is 
given in Figure 1, and two points should be noticed: 
that N a is a strictly decreasing function of a, and 
that N 1 in no way stands out from the trend. Al­
though exceptional in being related to Shannon's 
entropy, as a diversity number it is merely one of 
the Na. 

We may summarize our results as follows. 

N _ 00 = reciprocal of the proportional abun-
dance of the rarest species 

N 0 =total number of species present 
N 1 = exp(H) 
N 2 =reciprocal of Simpson's index; i.e. 

li(Pt2 +Pi+···+ Pn2 ) 

N "' = reciprocal of the proportional abun-
dance of the commonest species. 

An important consequence is that for the purposes of 
community description we should express measures 
of diversity on a uniform scale. That is to say, we 
should use the reciprocal of Simpson's index N 2 or 
conceivably the generalized entropy 

H 2 = ln(Nz), 
but not 

1 - Simpson's index , 

which is the measure favored by Whittaker ( 1965) 
and Pielou (1969). 

There is good reason for favoring diversity num­
bers over entropies. A diversity number is figuratively 
a measure of how many species are present if we 
examine the sample down to a certain depth among 
its rarities. If we examine superficially (e.g., by using 
N 2 ) we shall see only the more abundant species. If 
we look deeply (e.g., by using N0 ) we shall see all 
the species present. The diversity numbers N a have 
therefore a natural intuitive interpretation, albeit 
rather a vague one. The corresponding generalized 
entropies Ha, being logarithmic, are harder to vis­
ualize. 

Information-theoretic notation is now well estab­
lished in descriptive ecology and systematics. Sibson 
(1969) has used Renyi's generalized information 
theory to construct satisfying measures of taxonomic 

distance. He defined a notion of "information ra­
dius," of which the "bird species difference" of Mac­
Arthur, Recher and Cody (1966) is the special case 
of order 1. MacArthur and Wilson (1967, p. 110) 
assert that in future studies the diversity number N 2 

and another index, analogous to a correlation co­
efficient, may be used to measure diversity and over­
lap respectively. Following Sibson, their index of 
overlap should be replaced by the information radius 
of order 2. But although Sibson's measures are trust­
worthy, the investigator is advised to be cautious. 
Indices non sunt multiplicandi praeter necessitatem; 
and the use of diversity numbers of "peculiar" or­
ders such as N1.5 or N 1 ,414 is strongly to be discour­
aged. There is almost unlimited scope for mathemat­
ical generality in relation to measures of diversity 
and taxonomic difference. Simple and well-understood 
indices should be used. 

EVENNESS 

The concept of evenness can now be thrown into a 
clearer light. For any particular set of proportional 
abundances PvP2, ••• , Pn we have a continuum of 
possible diversity numbers Na, corresponding to the 
possible values of the index a. As a varies from -oo 
to oo, so the diversity number comes to depend more 
and more on the common species and less and less 
on the rare. In the "totally even" case, 

P1 = P2 = · · · = Pn = 11 n , 

the diversity numbers of all orders are equal to n; 
and in general the more even the proportions p1, the 
less variable will be N a over the range of a. 

It is open to us to define a double continuum of 
measures of evenness 

Ea. a= Na!Nb • (1) 

corresponding to all possibles pairs of values a,b. 
The usual definition is (Pielou 1969, p. 223) 

J =HI Hmax = ln(N1 )/In(N0), 

which is not a measure of evenness according to the 
equation ( 1). At least some of the Ea. b have, how­
ever, been considered in the literature. For example, 
Sheldon (1969) remarks briefly that E1 , 0 would be 
quite suitable for the purpose. 

The use of the statistics Ea. b is a departure from 
standard practice and must be justified. Consider a 
species-abundance relation having the property that 
each species is matched by a "double" of the same 
abundance. (One might, for example, take the two 
sexes of dioecious organisms.) Intuitively, this has 
the same evenness as the corresponding species-abun­
dance relation in which each species and its "double" 
are combined to form one super-species. The mea­
sures Ea. b satisfy this criterion, but J does not. Thus, 
Jet our species-abundance relations be 

S : Pt,Pt,P2,P2• · · · , Pn•Pn 
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and 

Then 

and 
Na(S') = (:E(2pi)a)l/(1-a) ; 

from which it follows that 

Na(S) = 2 Na(S') . 

In other words, S is exactly twice as diverse as S', 
so that the evennesses Ea, b(S) and Ea. 1,(S') are equal 
for all values of a, b. 

Thus we justify the statistics Ea. 1, in preference to 
the established measure J. But whereas J fails by this 
criterion, the alternative 

J' = H- Hmax = H 1 - Ho = ln(N1/ N 0 ) = ln(£1. 0 ) 

is entirely unexceptionable. 

SPECIES-ABUNDANCE RELATIONS 

If we consider a community with a hypothetical 
infinity of species, then N 0 , bein~ infinite, is not 
properly defined. The slope z of the curve of log 
(number of species in a sample) versus log(sample 
size) is a lower bound on the va:u~s of a for which 
the diversity number N a is finite. (A proof is given 
in the Appendix.) 

We must consequently avoid thinking of evenness 
statistics such as E1 . 0 as measuring a property of the 
community: being dependent on N 0 they are too de­
pendent on sample size (Sheldon 1969; Hurlbert 
1971). Provided, however, that the conditions of the 
proof apply-in particular that we can obtain a ran­
dom sample of the community-the alternative sta­
tistic E2• 1 should stabilize to a true community value 
as the size of the sample is increased. But with non­
random sampling (e.g. starting with a small area and 
working outwards) diversities of all orders will nor­
mally show a dependence on sample size. 

In practice, diversities, like the frequencies ob­
tained from quadrat sampling, must be regarded as 
having an essential dependence on sample size. There 
is therefore no reason to regard the natural statistic 
N 0 as any less reputable than N 1 or N 2 • N 2 , how­
ever, will usually be more stable than N 0 , and may 
assume a fairly constant value over a wide range of 
sample sizes. 

EXAMPLE 

As an example of the sort of relat!on which can 
exist between these various measures of diversity, 
we can consider diversity numbers calculated for 
dry-weight data in a pasture in North Wales. The 
pasture was a species-rich community consisting 
largely of grasses and small sedges, with nowhere any 
clearly defined dominant. The dry-weight standing 
crop in August was about 2.6 tons ha- 1 . A transect 

Position along transect (metres) 

FIG. 2. Diversity numbers of different orders calcu­
laled at intervals along a transect. 
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FIG. 3. Scatter diagram of N 1 versus N 2, computed for 
30 em x 30 em dry-weight samples in a pas:ure in North 
Wales. 

was taken, and diversity-numbers of order 0, 0.5, 1, 
1.5, 2.0 and oo were computed from the dry weights 
in 30 em X 30 em quadrats taken at 1 m intervals 
along it. 

The results are presented in Figure 2, and show a 
rather striking feature. This is that although the 
diversities of different orders show overall differ­
ences, their peaking is arithmetically much of the 
same size. In other words, N 1 is to a good approx­
imation equal to N 2 plus a constant, rather than to 
N 2 times a constant. There is therefore the possibility 
that the difference N 1 - N 2 may be more character­
istic of the community than is the evenness N 2 / N 1 

Only a wide-ranging empirical investigation could 
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determine whether this is so. Fairly obviously, how­
ever, evennesses should be regarded as secondary, 
and in routine analyses the original diversity num­
bers N 2 and N 1 , or N 2 and N 0 are to be preferred. 
These can conveniently be presented in a scatter di­
agram such as Figure 3. 

DISCUSSION AND CONCLUSIONS 

We may summarize our argument by saying that 
the notion of diversity is little more than the notion 
of the effective number of species present. Defining 
a diversity-number to be the reciprocal of a mean 
proportional abundance, we have followed Renyi 
( 1961 ) in employing a notation which grades these 
numbers according to their propensity to include or 
to exclude the rarer species in the enumeration. Dif­
ferent means-harmonic, geometric and arithmetic­
correspond to different well established measures of 
diversity. Entropies, which are logarithms of diversity 
numbers, are equivalent, but are less easy to visualize 
and consequently less suitable for general use. 

In view of Goodall's ( 1970) assertion that future 
developments in the theory of species diversity will 
be based on the niche concept, it is embarrassing to 
observe that we have so far left niches unmentioned. 
But our argument, which is a presentation of an 
appropriate notation, should be regarded not so much 
as a contribution to the theory of species diversity 
as an essay in nomenclature. It enables us to speak 
naturally, without being perplexed by apparent lapses 
into thermodynamics and entropy; it enables us to 
steer clear of the conceptual muddle occasioned by 
the use of inappropriate measures of evenness; and it 
enables us to apply measures of diversity with as 
much confidence to dry weights as to counts. 

But any choice of terminology involves certain, 
often unstated, theoretical commitments; and it would 
be disingenuous to claim that the notation is neutral 
as between different authors' views. Thus Margalef 
(1968, p. 19) states that "the ecologist sees in any 
measure of diversity an expression of the possibilities 
of constructing feedback systems or any sort of links, 
in a given assemblage of species." Margalef is not 
always an easy writer to understand; but in this case 
he clearly means that diversity is essentially a struc­
tural concept, and that it cannot be separated from 
theories of community organization. 

Now diversity is of theoretical interest because it 
can be related to stability, maturity, productivity, 
evolutionary time, predation pressure, and spatial 
heterogeneity. It is not necessarily related to feed­
back. Rather, it should be regarded as a measurable 
parameter whose observed values may be explained 
by a variety of theories. Even the connection between 
cybernetic theories and Shannon's entropy is to some 
extent historical-ecology is not thermodynamics. 
Renyi's generalized entropies reduce Shannon's to 

a special case; and they lead to the conclusion that 
as a measure of diversity it is in no way exceptional. 
Diversities are mere numbers and should be distin­
guished from the theories which they support. 
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APPENDIX 

We prove two propositions which are stated without 
proof in the text. 

PROPOSITION 1 
Let pl'p2 , ••• , p,. be positive numbers such that 

~P; = 1; 
and let 

Na = (~p;a)l/(1-a) . 
Then N a is continuous with derivatives of all orders at 
a= 1, and 

PROOF 

N 1 =lim Na = exp(-~pi In P;). 
a-+1 

We require three standard results of mathematical anal­
ysis. 
(a) F9r small values of x, exp(x) = 1 + x. 
(b) For small values of x, /n(1 + x) = x. 
(c) Let A(x) and B(x) be functions of x which can be 

expanded as power series in a neighborhood of 
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x = 0, and let A(x) and B(x) assume the value 
zero at x = 0. Then if the ratio A(x)IB(x) is con­
tinuous at x = 0, it also has derivatives of all orders, 
and can itself be expanded as a power series. 

We aim to show that 
lim (~pia)1/(1-a) = exp(-~, .. i In P;). 
a-+1 

Setting a = 1 + b, and taking logari hms of bo:h sides, 
it will suffice to show that 

lim _!_Jn(~p/+bl = ~P; In P; 
b-+0 b 

The left side of ( 1) can be rewritten 

lim - 1- ln(~Pi · P;b) 
b-+0 b 

=lim_!_ ln(~P; exp(b In P;)) 
b-+0 b 

=lim_!_ In(~pi + b ~PIn P;), 
b-+0 b 

by (a). Observing that 
~Pi= 1, 

(1) 

and using the standard result (b), the left side of equa­
tion ( 1) can be seen to be equal to its right side. 

The continuity of the derivatives follows immediately 
from (c) plus the fact that if A (x) is well behaved, so 
also is exp(-A(x)). 
Q.E.D. 

PROPOSITION 2 
Given random sampling from an infinite community, let 
z be the asymptotic slope of the curve of log(number 
of species in a sample) versus log(sample size), and let 
N a be the diversity number of order a. Then z is a lower 
bound on the values of a for which N a is finite. 

PROOF 
Define a species-abundance density f(x), such that there 
are f(x) dx species in the proportional abundance range 
x to x + dx. (We omit all consideration of the regularity 
conditions to which f should be subject; attempts to make 
the argument rigorous would presumably be successful 
but not very rewarding.) The overall proportional abun­
dance of all species is unity, so that 

1 J xf(x) dx = 1 . 
0 

(2) 

We can extend our definition of diversity numbers from 
finite samples to hyrothetically infinite communities by 
defining 

1 

Na=[f xat(x)dx]!/(1-al . (3) 

0 

with suitable modifications for the case a = 1. We re­
strict ourselves, for the sake of argument, to the simplest 
case, in which abundances are measured by numbers of 
individuals, and in which samples are taken at random 
from the infinite community. In a sample of M indi­
viduals the chance of getting an individual of a species 
whose true proportional abundance is x is 

1- e-Mx' 

so that in a large sample the total number of species is 
1 

S(M) = J (1 - c-Mx) f(x) dx. 
0 

Following the notation of MacArthur and Wilson (1967, 
p. 8), let z be such that 

S(M) - Mz as M---+ oo . 

We shall prove as a Lemma that this condition is equiv­
alent to the condition that 

f(x)- x-z-1 as x---+ 0 (4) 

Combining ( 3) and ( 4) we deduce that whole-commu­
nity diversity numbers Na, being of the order of 

1 J xa-z-1 dx 
0 

are defined only for values of a which are greater than 
z. We now prove the required lemma. 

LEMMA 
Under suitable regularity conditions, 

(1- e-Jtx) f(x) dx- Mz as M--> oo 

if and only if 

PROOF 
Let 

f(x) - x-z-1 as x---+ 0. 

1 

S(M) = J (1- e-.ll.r) f(x) dx. 

0 

We note that 
I 1/Jf I 

f f + f 
() () I /.11 

and that 
x <liM::::; (1- l/e)Mx < 1- e-.ll.c < Mx. 

X> 1/M::::; (1- l/e) < 1- e-.ll.r < 1 

Now let 
1/M 1 

l(M) = J Mxf(x) dx + J f(x) dx. 
0 1/Al 

By our inequalities (5) and (6), 
(1- l/e) l(M) ~ S(M) ~ l(M). 

(5 )' 

(6) 

It follows that the asymptotic properties of l(M) are the 
same as those of S(M). Moreover 

:~2 (l(M)) = -f(l/ M) I Ma (7) 

By (7), if 
l(M) - S(M) - Mz as M --> oo , 

then 
M-3j(l!M)- M'- 2 , 

so that 
f(x) - x-z-1 as x--> 0. 

The reverse implication follows immediately from the 
definition of l(M). 
Q.E.D. 

As becomes apparent in the proof of the lemma, the 
inference hinges essentially on the assumption that the 
species in any particular size of sample can be divided 
into two categories: the rare and the common. The com­
mon species are sure to be found, whereas the rare have 
a chance of being found which is proportional to their 
true abundance multiplied by the size of the sample. 




