DIVERSITY AND EVENNESS: A UNIFYING NOTATION
AND ITS CONSEQUENCES!
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Abstract. Three commonly used measures of diversity, Simpson’s index, Shannon’s entropy,
and the total number of species, are related to Rényi’s definition of a generalized entropy. A
unified concept of diversity is presented, according to which there is a continuum of possible
diversity measures. In a sense which becomes apparent, these measures provide estimates of
the effective number of species present, and differ only in their tendency to include or to ignore
the relatively rarer species. The notion of the diversity of a community as opposed to that of
a sample is examined, and is related to the asymptotic form of the species-abundance curve.
A new and plausible definition of evenness is derived.

When we say that the humid tropics are more di-
verse than the tundra, we mean that there are more
species there. More precisely, we mean that the spe-
cies in the humid tropics have on average lower pro-
portional abundances than those in the tundra—a
fact which is amply visible to the naked eye and
which can be demonstrated by the use of any mea-
sure of diversity we care to devise. But there is little
point in merely confirming the obvious; the purpose
of determining diversity by a numerical index is
rather to provide a means of comparison between less
clear-cut cases. Unfortunately, when we look for a
suitable numerical definition, we find that no par-
ticular formula has a pre-eminent advantage, and
that different authors have plausibly proposed dif-
ferent indices. In the ensuing confusion, Hurlbert
(1971) has despaired, declaring diversity to be a non-
concept. Fortunately his despair is premature, and
when carefully defined according to an appropriate
notation, diversity can be as unequivocal as any other
ecological parameter.

Many of the indices which have been proposed
apply only to counts of individuals and not to contin-
uous measures of quantity. There is no obvious intu-
itive reason why this should be so, and Goodall
(1970) observes that in plant communities counts of
individuals are often impossible. Ideally, indeed, we
should like to compute the diversity of a sample of
dry weights or of productivities, as well as that of a
sample of counts of individuals, Another point, often
noticed and repeatedly ignored, is that whereas it is
easy enough to define measures of diversity which
apply to a particular sample, very often they will
have no meaning when applied to the whole com-
munity. Consider, for example, the diversity as mea-
sured by the number of species in a sample. As the
size of the sample is increased, so also will the “di-
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versity,” almost without limit. On this basis Mac-
Arthur and Wilson (1967) propose a law of species-
area relations: that the number of species encoun-
tered is proportional to a power of the area sampled.
In symbols,

S < A7,

where § is the number of species encountered, A is
the area sampled, and z is an empirical constant
which usually lies between 0.1 and 0.4. So if we wish
to use indices of diversity to characterize some fea-
ture of a hypothetically infinite community rather
than of a particular sample, then we must allow for
an arbitrarily large number of species.

Different indices measure different aspects of the
partition of abundance between species. Simpson’s
index, for example, is sensitive to the abundance only
of the more plentiful species in a sample, and can
therefore be regarded as a measure of “dominance
concentration” (Whittaker 1965). Other statistics,
such as the total number of species, are strongly
affected by the presence of rarities. Whittaker con-
siders that the partition of abundance cannot be ad-
equately summarized by one statistic, but should be
characterized both by the “dominance concentration”
and by the total number of species. Other authors
(e.g., Lloyd and Ghelardi 1964) have gone further,
and have defined a notion of “evenness,” which is
in effect a comparison between the diversity as mea-
sured by the total number of species, and the diver-
sity as measured by some other statistic.

Having developed an appropriate notation, we shall
see that the statistics advocated by Whittaker are
closely related to Shannon’s entropy, and that all
three measures are in a sense evaluations of the num-
ber of species present in the sample. They differ in
their propensity to include or to exclude the relatively
rarer species. Evenness is then redefined as the ratio
of any two such evaluations, a definition which is
shown to satisfy an important intuitive criterion.
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NOTATION
Let
PusP2y -+ -5 Pn
denote the proportional abundances of the n species
in a sample. If we are dealing with dry weights, then
p; is the ratio of the mass of the i species to the
total mass of the sample. If we are dealing with
counts of individuals, then p, is the ratio of the count
of the ith species to the total number of individuals
in the sample. And so on.
Clearly,

pp+pe+...+p,=1.
Ignoring finite sample considerations, Simpson’s in-
dex is

g=pP+p+ .+ p2

The formula can be rewritten

Py P22t papy)

- (py+ P2+ ...+ pp)

- (Wipy + wope + ...+ wip,)

T (wywe kL wy)

where
w, = p, (i=1,...,n).
It follows that g is a weighted mean of the propor-
tional abundances. Now when only one species has
any appreciable abundance
q == 1 s

and when all n species are equally abundant

g=1/n.

Other cases are intermediate. It follows that the quan-
tity
No(py,pa, ..., pp) = 1/q
is a measure of the degree of polydominance. (This
is a loose description of what is measured by N,, but
it does convey an intuitive impression.)
More generally, we can define

N, =

(Wipy 971+ wopp® 1+ L wppt YV
[ (wy+we+...4+w,) ]

which is the reciprocal of the (a— 1)t root of
a weighted mean of the (a-—1)' powers of the
proportional abundances of the n species. For reasons
similar to those given for the special case a =2, N,
can be regarded as an estimate of the effective num-
ber of species present in the sample. We shall call
it the diversity number of order ¢. Remembering that
the weights w; are equal to the proportional abun-
dances p;, we can rewrite our definition as

N,= (pro+po+ ... +pn'1)1/(1~a) .

N, can easily be seen by substitution to be n, the
total number of species in the sample. N, is as yet
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undefined. However, N, is continuous with derivatives
of all orders at ¢ = 1. (For a proof, sec Appendix.)
Defining

N, =lim (N,) ,

a-1

we find that
N, =exp(—2X p;In(p;)) = exp(H),
where H is Shannon’s entropy,
—Z p;In(p;) .

Our notation therefore covers the three most im-
index

portant measures of diversity, Simpson’s
(= 1/N,), the total number of species (= N,), and
Shannon’s entropy (=In(N;)). It derives from
Rényi (1961), who defined

H,=1n(N,)

to be the generalized entropy of order aq, and proved
that the quantities H, satisfy certain axioms which
entitled them to be regarded as measures of “infor-
mation.” The information-theoretic analogy is not
illuminating in the present context; diversities are
better characterized as reciprocals of mean propor-
tional abundances. In particular, 1/Ny is an arith-
metic mean of the proportional abundances, 1/N;
is a geometric mean of the proportional abundances,
and 1/N, is a harmonic mean of the proportional
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Fic. 1. The relation between the diversity number N,
and its order a for a particular 30 cm X 30 cm dry-
weight sample in a pasture.
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abundances. (The means in question are, as we have
seen, weighted by the proportional abundances them-
selves.) It is well known that the geometric mean
always assumes a value intermediate between the
arithmetic mean and the harmonic mean, so that
N; (=exp(H)) is always sandwiched between N,
the total number of species and N, the reciprocal of
Simpson’s index. Whittaker’s (1965) assertion, there-
fore, that Simpson’s index and the total number of
species are between them suitable for characterizing
the partition of abundance in a sample, is well borne
out. Shannon’s entropy, being essentially interme-
diate, conveys little extra information.

A graph of N, versus a for a particular case is
given in Figure 1, and two points should be noticed:
that N, is a strictly decreasing function of a, and
that N, in no way stands out from the trend. Al-
though exceptional in being related to Shannon’s
entropy, as a diversity number it is merely one of
the N,.

We may summarize our results as follows.

N_ o =reciprocal of the proportional abun-
dance of the rarest species

Ny = total number of species present

N, =exp(H)

N, = reciprocal of Simpson’s index; i.e.
1/(p® + p2® + ...+ p.)
N . =reciprocal of the proportional abun-

dance of the commonest species.

An important consequence is that for the purposes of
community description we should express measures
of diversity on a uniform scale. That is to say, we
should use the reciprocal of Simpson’s index N, or
conceivably the generalized entropy

Hy =1n(N,) ,
but not
1 — Simpson’s index ,

which is the measure favored by Whittaker (1965)
and Pielou (1969).

There is good reason for favoring diversity num-
bers over entropies. A diversity number is figuratively
a measure of how many species are present if we
examine the sample down to a certain depth among
its rarities. If we examine superficially (e.g., by using
N,) we shall see only the more abundant species. If
we look deeply (e.g., by using N,) we shall see all
the species present. The diversity numbers N, have
therefore a natural intuitive interpretation, albeit
rather a vague one. The corresponding generalized
entropies H,, being logarithmic, are harder to vis-
ualize.

Information-theoretic notation is now well estab-
lished in descriptive ecology and systematics. Sibson
(1969) has used Rényi’s generalized information
theory to construct satisfying measures of taxonomic
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distance. He defined a notion of “information ra-
dius,” of which the “bird species difference” of Mac-
Arthur, Recher and Cody (1966) is the special case
of order 1. MacArthur and Wilson (1967, p. 110)
assert that in future studies the diversity number N,
and another index, analogous to a correlation co-
efficient, may be used to measure diversity and over-
lap respectively. Following Sibson, their index of
overlap should be replaced by the information radius
of order 2. But although Sibson’s measures are trust-
worthy, the investigator is advised to be cautious.
Indices non sunt multiplicandi praeter necessitatem;
and the use of diversity numbers of “peculiar” or-
ders such as N, 5 or N, 44 is strongly to be discour-
aged. There is almost unlimited scope for mathemat-
ical generality in relation to measures of diversity
and taxonomic difference. Simple and well-understood
indices should be used.

EVENNESS

The concept of evenness can now be thrown into a
clearer light. For any particular set of proportional
abundances p;,ps, ..., p, Wwe have a continuum of
possible diversity numbers N,, corresponding to the
possible values of the index a. As a varies from —
to 0, so the diversity number comes to depend more
and more on the common species and less and less
on the rare. In the “totally even” case,

pr=p2=...=p,=1Un,
the diversity numbers of all orders are equal to n;
and in general the more even the proportions p,, the
less variable will be N, over the range of a.

It is open to us to define a double continuum of
measures of evenness

Ea,b:Na/Nb s e e (1)

corresponding to all possibles pairs of values a,b.
The usual definition is (Pielou 1969, p. 223)

J=H/Hp, =In(N;)/In(Ny) ,

which is not a measure of evenness according to the
equation (1). At least some of the E, ;, have, how-
ever, been considered in the literature. For example,
Sheldon (1969) remarks briefly that E; , would be
quite suitable for the purpose.

The use of the statistics E, , is a departure from
standard practice and must be justified. Consider a
species-abundance relation having the property that
each species is matched by a “double” of the same
abundance. (One might, for example, take the two
sexes of dioecious organisms.) Intuitively, this has
the same evenness as the corresponding species-abun-
dance relation in which each species and its “double”
are combined to form one super-species. The mea-
sures E, , satisfy this criterion, but J does not. Thus,
let our species-abundance relations be

§: P1:P1:P2:P25 « + + s Pn-Pn
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and
S 2p2p0, - .25 2D, .
Then
N,(5) = (28 pa)V/ o
and

N (§8) = (2(2py)n) /-,
from which it follows that

N,(S) =2N, (8.
In other words, S is exactly twice as diverse as ¥,
so that the evennesses E, ,(S) and E, ,(S’) are equal
for all values of g, b.

Thus we justify the statistics E, , in preference to
the established measure J. But whereas J fails by this
criterion, the alternative
J=H—H_,,=H;—Hy=In(N,/Ny) =1In(E, )

is entirely unexceptionable.

a. b

SPECIES-ABUNDANCE RELATIONS

If we consider a community with a hypothetical
infinity of species, then N,, being infinitz, is not
properly defined. The slope z of the curve of log
(number of species in a sample) versus log(sample
size) is a lower bound on the valuzs of g for which
the diversity number N, is finite. (A proof is given
in the Appendix.)

We must consequently avoid thinking of evenness
statistics such as E; , as measuring a property of the
community: being dependent on N, they are too de-
pendent on sample size (Sheldon 1969; Hurlbert
1971). Provided, however, that the conditions of the
proof apply—in particular that we can obtain a ran-
dom sample of the community—the alternative sta-
tistic E, , should stabilize to a true community value
as the size of the sample is increased. But with non-
random sampling (e.g. starting with a small area and
working outwards) diversities of all orders will nor-
mally show a dependence on sample size.

In practice, diversities, like the frequencies ob-
tained from quadrat sampling, must be regarded as
having an essential dependence on sample size. There
is therefore no reason to regard the natural statistic
N, as any less reputable than N, or Na.. N,, how-
ever, will usually be more stable than N,, and may
assume a fairly constant value over a wide range of
sample sizes.

EXAMPLE

As an example of the sort of relation which can
exist between these various measures of diversity,
we can consider diversity numbers calculated for
dry-weight data in a pasture in North Wales. The
pasture was a species-rich community consisting
largely of grasses and small sedges, with nowhere any
clearly defined dominant. The dry-weight standing
crop in August was about 2.6 tons ha—1. A transect
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Fic. 2. Diversity numbers of different orders calcu-
lated at intervals along a transect.

.

Fic. 3. Scatter diagram of N, versus N,, computed for
30 cm X 30 cm dry-weight samples in a pasiure in North
Wales.

was taken, and diversity-numbers of order 0, 0.5, 1,
1.5, 2.0 and o were computed from the dry weights
in 30 cm X 30 cm quadrats taken at 1 m intervals
along it.

The results are presented in Figure 2, and show a
rather striking feature. This is that although the
diversities of different orders show overall differ-
ences, their peaking is arithmetically much of the
same size. In other words, N, is to a good approx-
imation equal to N, plus a constant, rather than to
N, times a constant. There is therefore the possibility
that the difference N; — N, may be more character-
istic of the community than is the evenness N,/N;
Only a wide-ranging empirical investigation could
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determine whether this is so. Fairly obviously, how-
ever, evennesses should be regarded as secondary,
and in routine analyses the original diversity num-
bers N, and N,, or N, and N, are to be preferred.
These can conveniently be presented in a scatter di-
agram such as Figure 3.

DiscussioN AND CONCLUSIONS

We may summarize our argument by saying that
the notion of diversity is little more than the notion
of the effective number of species present. Defining
a diversity-number to be the reciprocal of a mean
proportional abundance, we have followed Rényi
(1961) in employing a notation which grades these
numbers according to their propensity to include or
to exclude the rarer species in the enumeration. Dif-
ferent means—harmonic, geometric and arithmetic—
correspond to different well established measures of
diversity. Entropies, which are logarithms of diversity
numbers, are equivalent, but are less easy to visualize
and consequently less suitable for general use.

In view of Goodall’s (1970) assertion that future
developments in the theory of species diversity will
be based on the niche concept, it is embarrassing to
observe that we have so far left niches unmentioned.
But our argument, which is a presentation of an
appropriate notation, should be regarded not so much
as a contribution to the theory of species diversity
as an essay in nomenclature. It enables us to speak
naturally, without being perplexed by apparent lapses
into thermodynamics and entropy; it enables us to
steer clear of the conceptual muddle occasioned by
the use of inappropriate measures of evenness; and it
enables us to apply measures of diversity with as
much confidence to dry weights as to counts.

But any choice of terminology involves certain,
often unstated, theoretical commitments; and it would
be disingenuous to claim that the notation is neutral
as between different authors’ views. Thus Margalef
(1968, p. 19) states that “the ecologist sees in any
measure of diversity an expression of the possibilities
of constructing feedback systems or any sort of links,
in a given assemblage of species.” Margalef is not
always an easy writer to understand; but in this case
he clearly means that diversity is essentially a struc-
tural concept, and that it cannot be separated from
theories of community organization.

Now diversity is of theoretical interest because it
can be related to stability, maturity, productivity,
evolutionary time, predation pressure, and spatial
heterogeneity. It is not necessarily related to feed-
back. Rather, it should be regarded as a measurable
parameter whose observed values may be explained
by a variety of theories. Even the connection between
cybernetic theories and Shannon’s entropy is to some
extent historical—ecology is not thermodynamics.
Rényi’s generalized entropies reduce Shannon’s to
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a special case; and they lead to the conclusion that
as a measure of diversity it is in no way exceptional.
Diversities are mere numbers and should be distin-
guished from the theories which they support.
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APPENDIX

We prove two propositions which are stated without
proof in the text.

PROPOSITION 1
Let p,.py, ..., P, be positive numbers such that
2p, = 1;
and let
Na = (Zpia)l/(l_“) .

Then N, is continuous with derivatives of all orders at
a=1, and
N, =lim N, =exp(—Zp;Inp;) .
a1

PROOF

We require three standard results of mathematical anal-

ysis.

(a) For small values of x, exp(x) =~ 1+ x.

(b) For small values of x, In(1 4+ x) ~ x.

(¢) Let A(x) and B(x) be functions of x which can be
expanded as power series in a neighborhood of
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x=0, and let A(x) and B(x) assume the value
zero at x = 0. Then if the ratio 4(x)/B(x) is con-
tinuous at x — 0, it also has derivatives of all orders,
and can itself be expanded as a power series.
We aim to show that
lim (£p)l/(1—a) —exp(—X;, Inp,) .
a—1
Setting @ = 1 + b, and taking logari hms of bo:h sides,
it will suffice to show that
lim LIn(Epi+v =Spnp, . . . (1)
b—0
The left side of (1) can be rewritten

. 1
lim — In(Zp; - p;?)
b0 b

= lim—l_ In(Zp,exp(binp;))
>0 b

.1
= lim_-__
b0 b

by (a). Observing that

In(Zp;,+bZplnp,),

Ep, =1,

and using the standard result (b), the left side of equa-
tion (1) can be seen to be equal to its right side.

The continuity of the derivatives follows immediately
from (c) plus the fact that if A(x) is well behaved, so
also is exp(—A(x)).

Q.E.D.

PROPOSITION 2

Given random sampling from an infinite community, let
z be the asymptotic slope of the curve of log(number
of species in a sample) versus log(sample size), and let
N, be the diversity number of order a. Then z is a lower
bound on the values of a for which N, is finite.

PROOF

Define a species-abundance density f(x), such that there
are f{x) dx species in the proportional abundance range
x to x 4+ dx. (We omit all consideration of the regularity
conditions to which f should be subject; attempts to make
the argument rigorous would presumably be successful
but not very rewarding.) The overall proportional abun-
dance of all species is unity, so that
1

fxf(x) dx=1.

0

2)

We can extend our definition of diversity numbers from
finite samples to hypothetically infinite communities by
defining

1
N,=1 | xof(x) dx]i/t1—m (3)
/

with suitable modifications for the case a = 1. We re-
strict ourselves, for the sake of argument, to the simplest
case, in which abundances are measured by numbers of
individuals, and in which samples are taken at random
from the infinite community. In a sample of M indi-
viduals the chance of getting an individual of a species
whose true proportional abundance is x is
1 —e—Mx

so that in a large sample the total number of species is

1
S(M) = f (1 — e=M2) f(x) dx .
0
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Following the notation of MacArthur and Wilson (1967,
p. 8), let z be such that

S(M) ~ M?
We shall prove as a Lemma that this condition is equiv-
alent to the condition that
flx) ~x—=—1 as x>0 . . . (4)
Combining (3) and (4) we deduce that whole-commu-
nity diversity numbers N, being of the order of
1

f xa—2—1dx

]

as M — .

are defined only for values of a which are greater than
z. We now prove the required lemma.

LEMMA
Under suitable regularity conditions,
(1 —e—¥2) f(x) dx ~ M? as M - =
if and only if
f(x) ~ x—+—1 as x > 0.
PROOF
Let

1
S(M) = f (1 — e=r) f(x) dx .
0

We note that

[ =]« ]

/M

and that
x<I/MZ (1 —1/e)Mx <1 —e- U Mx. (5)
x>U/MZ3(1—1/e) <1 —e ¥ 1 (6)

Now let
1/M 1

(M) = f Mxf(x) dx—{—f
0 1/M

f(x) dx.

By our inequalities (5) and (6),
(1 —1/e) IM) =5S(M) =1I(M) .

It follows that the asymptotic properties of (M) are the
same as those of S(M). Moreover

d2
—s (M) = —f(1/M) | M3

dM? 7y
By (7), if
(M) ~S(M) ~ M= as M - ¢,
then
M=3f(1/M) ~ M:-2,
so that

f(x) ~x—+—1 as x - 0.

The reverse implication follows immediately from the
definition of I(M).

QED.

As becomes apparent in the proof of the lemma, the
inference hinges essentially on the assumption that the
species in any particular size of sample can be divided
into two categories: the rare and the common. The com-
mon species are sure to be found, whereas the rare have
a chance of being found which is proportional to their
true abundance multiplied by the size of the sample.





